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(I) D1, = 

(35) 

(36) 

(.37) 

- [(a,)! - (ai)[i]9j + [(«,Jt(T)i,„)rt - ( « I ) I I ( D ; , „ ) I | 
[OD-,,,,), - (T : ,„)i, | 

- [ ( ^ ) 1 - (Qi2)H]S; + [(«2)i(D;,.Jn - (Qi3)Ii(Sk)Il 
[(£•>,„ )i - (X)21JnI 

D22 = 

[(cnQt - ( g J n l M i - [(«i)i(X;,n)n - («i)n(X;m)il 
!(X,,»)i - (X,,„),i] 

Experiments in which the concentration of one 
solute is the same on both sides of the boundary 
are of special interest because the value calculated 
for each D,j is then influenced least by experimental 
uncertainty in the reduced moments. Further , such 
experiments can be used to evaluate Ri and R2. 
According to equations 31 and 32, when (a2)i = 0 
so tha t (cti)i = 1, and (a i )n = 0 so tha t (a2)n = 1 

Si = (X21Ji (38.) 
and 

e-< = (X2„,),i (39) 

For such experiments equations 34-37 reduce, after 
substitution of equations 31 and 32, to 

Dn = 
(X lJ 1 - (2 i(X2m)i 

(X21Ji - (X21Jn 
(40) 

(S 
G) 
IX, = 

Dn = 

/J2I = 

(X; , Jn- (X 2 n Q 2 H 
( X 2 1 J , 

(Xa111), 

(X2 1 1 1) I i 

(X2111)5, 

(Xi,, 

(X2 1Jn - (X2,,,), 

) , ,-(X2 1J1(X2 , , ,) , , 

(41) 

( 4 J 

(4,3) 
(X)21Jn - (X21Ji 

The above equations may be used to calculate 
diffusion coefficients from measurements made with 
any diffusion apparatus which yields the reduced 
second and fourth moments of the refractive index 
gradient curve in free diffusion. In a companion 
paper measurements of j ! 2 m and £2

im with the Gouy 
diffusiometer are presented for two three-compo
nent systems with interacting flows. 
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Interacting Flows in Liquid Diffusion: Expressions for the Solute Concentration 
Curves in Free Diffusion, and their Use in Interpreting Gouy Diffusiometer Data for 
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By using an extension of Fick's first law to represent interacting flows in three-component systems, series expansions are 
developed for the concentration of each solute as a function of time, position and four diffusion coefficients. These expres
sions converge rapidly when either of the two cross-term diffusion coefficients is small. From these series expansions, equa
tions are derived relating the diffusion coefficients to the reduced height-area ratio, XA, and to the fringe deviation graphs 
which provide a measure of deviations of the refractive index gradient curve from Gaussian shape. To test these relations, 
data are presented from several experiments with the Gouy diffusiometer in which lithium chloride and potassium chloride 
diffused simultaneously. An electrolyte system was chosen with the hope that it would exhibit greater interaction of flows 
than a non-electrolyte system through electrostatic coupling of the flows of ions of different mobility; assuming that the 
flow equations are valid, the series expansions are applicable to either case. In all experiments the mean concentration 
of a given solute was the same, but the ratio of their concentration increments across the boundary was varied from experi
ment to experiment. Values were chosen for the four diffusion coefficients which best fit the reduced moments (consult 
companion paper), reduced height-area ratios, and fringe deviation graphs of the several experiments. The results provide 
evidence for the validity of the flow equations. Data are also reported for the simultaneous diffusion of lithium and sodium 
chlorides in aqueous solution. The four diffusion coefficients for this system are calculated from reduced moments of the 
refractive index gradient curves: neither cross-term diffusion coefficient is small enough to permit use of the equations for 
the fringe deviation graphs. 

Throughout the past one hundred years, diffusion 
measurements in liquid systems have been in
terpreted by means of Fick's first law.1 This law 
may be regarded as a phenomenological equation 
expressing proportionality between the flow of a 
component and the first power of its concentration 
gradient, the proportionality coefficient being 
called the diffusion coefficient. Many careful 
studies of free, restricted and steady-state diffusion 
have established the validity of this law to describe 
the process of diffusion in liquid two-component 

(1) A. Pick, Pogg. Ann., 9i, 59 (18.W). 

systems.'- Furthermore, it has also been found 
adequate to describe the flow of each solute in cer
tain three-component systems.3 4 

On the other hand, throughout the last several 
(2) I t should be noted that the diffusion coefficient may vary with 

concentration without invalidating Fick's first law. However, if 
the partial molal volume of the solute varies markedly with concen
tration, an additional term in the bulk flow must be added to the flow-
equation (see Onsager, ref. 15). The effects of such variations on the 
shape of the diffusing boundary can be diminished by reducing the 
concentration differences between the two solutions which are used to 
form the initial boundary. 

(3) D. F. Akeley and L. J. Gosting, T H I S JOURNAL, 75, 5085 (1953). 
it) P. J. Dunlop. ibid., 77, 2994 (1955). 
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decades numerous experiments have been reported 
which indicate that Fick's law cannot be generally 
valid for systems of three or more components. 
Perhaps the simplest way this has been shown was 
by allowing diffusion to proceed between two solu
tions originally containing one solute (the "test 
solute"5) at identical concentrations while the 
other solute (the "diffusing solute"5) was at dif
ferent concentrations. After a period of diffusion, 
unequal concentrations of the "test solute" were 
found on the two sides of the initial boundary.6 

Not only was this phenomenon noted when the two 
solutes were salts,5'7-11 but also when one was a 
salt and the other a non-electrolyte.9,la Any 
mathematical representation of the "test solute's" 
flow when its concentration gradient is zero clearly 
requires a more general flow equation than Fick's 
first law. Therefore, it is important to recognize 
that the use of functions derived from Fick's first 
law (such as the Gaussian function for the case of 
free diffusion) to calculate a single "diffusion co
efficient" for each solute in such systems is, at best, 
only an approximate procedure for representing the 
diffusion process. 

Both Lamm1314 and Onsager15 have proposed 
sets of generalized flow equations which are in
tended to describe flows in systems of three or more 
components. The equations we adopt are modi
fications of Onsager's set and constitute a direct 
phenomenological approach. Thus, the form of the 
flow equations is chosen so as to relate conveniently 
data from one diffusion experiment to the data from 
another in which the mean concentration of any 
given solute is the same in all experiments. Cor
relation of the measured diffusion coefficients with 
other data, such as activity coefficients or equivalent 
ionic conductances, is left for future investigation. 

Theory: Solute Concentration Distributions 
In this theoretical section, expressions for the 

solute concentrations in the freely diffusing boun
dary are derived, first for the case that one cross-
term diffusion coefficient is zero and then when one 
of these coefficients is small. From these distri
butions an expression is next obtained for the re
fractive index curve which, in turn, is used to ob 
tain an expression for the reduced height-area ratio. 
Equations which apply specifically to the Gouy 
diffusiometer are derived in the second theoretical 
section. 

Flow Equations.—The derivations of equations in 
this article are based on flow equations which are 
also presented in the companion paper16 and dis-

(5) G. S. Walpole, Biochem. J. (London), 9, 132 (1915). 
(6) Such effects might arise if the partial molal volumes of the 

solutes changed markedly with concentration, but the observed ef
fects seem too large to be explained in this way. 

(7) S. Arrhenius, Z. physik. Chew.., 10, 51 (1892). 
(8) J. Thovert, Compt. rend., 134, 826 (1902). 
(9) W. A. Osborne and L. C. Jackson, Biochem. J. (London), 8, 246 

(1914). 
(10) J. W. McBainand C. R. Dawson, T H I S JOURNAL, 56, 52 (1934). 
(11) L J. Burrage and A. J. Allmand, / . Phys. Chem., 41, 88? 

(1937). 
(12) J. W. McBain and T. H. Liu, THIS JOURNAL, 53, 59 (1931). 
(13) O. Lamm, Arkiv Kemi, Mineral, Geo!., 18A, No. 2 (1944). 
(14) O. Lamm, / . Phys. Colloid Chem., 51, 1063 (1947). 
(15) L. Onsager, Ann. N. Y. Acad. Set., 46, 241 (1945). 
(16) R. L. Baldwin, P. J. Dunlop and L. J. Gosting, T H I S JOURNAL, 

77, 5235 (1955). 

cussed there in more detail. It may be helpful for 
the reader to refer to the section "Flow Equations" 
in that paper before proceeding further. To avoid 
rewriting a number of equations appearing in the 
companion article, we will refer directly to those 
equations, distinguishing them from the equations 
in this article by the suffix C. 

For systems of three components, we propose 
equations for each solute flow, /,•, (i = 1,2) of the 
following form17 (see equation 3C). 

J1 = - Dn(HC1ZbX), - D1^dCJdX)1 (1) 
J2 = - D21(SC1ZdX)1 - D22(dC2/dx)t (2) 

As indicated in the companion paper, the differ
ential diffusion coefficients Dn, Du, D2\ and D22 
defined by these equations differ from those de
fined by Onsager.15 Equations of this type were 
chosen because it is convenient in experimental 
work to measure, at a given level x and time t, 
the solute concentrations, C,-, or concentration 
gradients, (dC,-/d.v)j, rather than corresponding 
quantities for the solvent (i = 0). Consideration 
of systems with 4, 5, etc., components, requiring 
9, 16, etc., diffusion coefficients for their descrip
tion,15 is left for future investigation. For con
venience the coefficients Dx2 and D2\ will be re
ferred to as cross-term diffusion coefficients. It 
should be noted that, in general, Di2 ^ D21; how
ever, because of the principle of microscopic re
versibility, a relation exists among the four 
measured diffusion coefficients of a three-component 
non-electrolyte system.15 

Differential Equations for the Solute Concentra
tions.—These relations are obtained by substitut
ing equations 1 and 2, separately, into the equa
tion of continuity 

(ddZdI)x = - (dJiZdX)1 (3) 

Because only free diffusion will be considered, we 
may utilize the fact, first recognized by Boltz-
mann,18 that the variables x and t always occur19 

in the ratio x/y/t, provided t is the time of diffusion 
from a sharp initial boundary. Defining 

y = x/(2y/t) (4) 

and assuming that each diffusion coefficient is con
stant throughout the boundary region, we obtain 
from equations 1-4 the desired differential equa
tions 

(17) Here we consider only the case of one-dimensional diffusion in 
a vertical cell of uniform cross-section. The x coordinate is defined as 
fixed relative to the cell and increasing in the downward direction, with 
its origin at the position of the sharp initial boundary between the two 
starting solutions A and B. Flows Ji and Jz are expressed as moles of 
components 1 and 2, respectively, which cross a unit area at some level 
x per unit of time, I; they are considered positive in the direction of 
increasing x. The concentrations are expressed as moles per unit 
volume of solution. Because no term for bulk flow is included in 
these equations, we are assuming that all concentration differences, 
ACi, between solutions A and B are made so small that variations 
with concentration of the partial molal volumes, Vi, of each component 
can be neglected. Use of small values of AC1' also reduces variations 
within the cell of the diffusion coefficients, Dn, Dv., D21 and Di? and of 
the differential refractive increments, hi (equation 7C). This per
mits us to consider these quantities as constants, and simplifies the 
derivation of the equations in this section. 

(18) L. Boltzmann, Wied. Ann., 53, 959 (1894). 
(19) That this relationship is valid even when the flows interact is 

indicated by equation 24C and also by the experimental observations 
reported below: i.e., the product of the downward displacement of 
each Gouy fringe and the square root of the time was independent of 
time (after making the small starting time correction, A )̂. 
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(9) 
(10) 

of each solute is 

(H) 

- 2y(dCi/dy) = Dn(A
2C1My*) + Du(VCiMy2) (5) 

and 
- 2y{dC2/dy) = D^(A2C1ZAy2) + D-^d2C1/dy2) (6) 

These equations must now be solved for the case of 
free diffusion subject to the following boundary 
conditions for each solute (i = 1,2): when / = 0 

Ci = Ci + (AC,/2) for x > 0 (7) 
Ci = Ci - (AC/2) for* < 0 (8) 

and when / > 0 
C = Ci + (Ad/2) for x = + 
d = Ci - (AC/2) for x = -

Here the mean concentration 
denoted by 

Ci = [ (G)A + ( C - ) B ] / 2 

and each concentration difference across the 
boundary between solutions A and B is 

AC = [ ( O B - ( O A ] (12) 

Equations for the Solute Concentrations when 
One Cross-Term Diffusion Coefficient is Zero.— 
Inspection of equations 5 and 6 shows that when 
either Di2 or D2i is zero, these equations uncouple 
and allow solution for both Ci and C2 in closed form. 
For example, if D2i = O then equation 6 may be 
integrated directly after multiplying by the 
integrating factor, e*y"/v°-\ Evaluation of the 
integration constants from equations 9 and 10 then 
yields the familiar concentration distribution for 
free diffusion without interacting flows 

C2 = C1 + (AC/2)H(z22) (13) 

In this and subsequent equations the notation is 
simplified by the definitions 

Zn = y/VDu 

Zn = y/\ZD2i 

H(Z11) = (2/V*)f°* 

H(Z22) = (2ZV^)J''" 

The second derivative of equation 1,': 

Cl2C2 1 d2C 
dy 

is now substi tuted into equation 5 which is then 
integrated after multiplication by the integrating 
factor e+y'/D". Use of equations 9 and 10 to 
evaluate the constants gives 

-p da 

M/3 

A 2 dzl, = 2D^1
 H"(Z22) 

(14) 

(15) 

(16) 

(17) 

(18) 

C = C + ( ^ ) „<=„> + 

AT^A, P T ) [H(ZII) ~ H(Z22)] (19) 

If Dn, instead of D2i, is set equal to zero, then 
corresponding integrations of equations 5 and (i 
lead to the results 

C = C + (Ad/2)H(s„) (20) 
and 

C2 = C2 + (A-J2) H(Z22) + 

2^XT) [ H <'">- H ( '" ) ] (2,) 

Series Expansions for the Solute Concentrations 
when One Cross-Term Diffusion Coefficient is 

Small.—When Dn is not zero bu t is small, equa
tion 19 is an approximate solution for d. Simi
larly, equation 21 is an approximate solution for 
C2 when Di2 is small. Thus, when neither Di2 nor 
D2i is zero, the next term in an expansion for Ci or 
C2, respectively, can be obtained using equation 21 
to approximate d2C2/dy2 for equation 5 and equa
tion 19 to approximate d2Ci/dy2 for equation (i. 
Subsequent integration of these forms of equations 
5 and 6, and evaluation of the constants from the 
boundary conditions 9 and 10 yields the desired 
relations 

C = C + (^f-1) H( + 
D1, 

D11 

A 2 [ ( ^ ) ! H U l ) - H ( Z 2 2 ) 1 -

! (A1 - O22) / 
~^b~n H ( Z I , ) - + 

•] (22) 

C2 = C2 + ( * £ ' ) H(Z22 

D11 

+ 

D1-

D-,-

A ~ I ( " T ) [ H ( 2 2 2 ) _ H ( 

D11 /ACA \ r w , , 

Z22(A2 - A 1 ) 
Du 

i)l -

H(Z11)] + 

H'fe) (23) 
2A2 " K~"J\ 

Higher terms in these series could be obtained by 
repeating this procedure of successive approxima
tions, but such extensions will not be considered.-0 

A Series Expression for the Refractive Index 
Curve.—The series expansions for the solute con
centrations will now be used to obtain a relation 
between refractive index and position in the cell. 
As in equation 5C, we assume tha t the dependence 
of refractive index on solute concentrations, 
throughout the diffusing boundary, is adequately 
represented by the first three terms of a Taylor 
expansion 

n = nc + R1(C1 - C1) + R1(C1 - C2) + . . . (24) 

Here n~c is the refractive index of a solution in which 
the solutes are at the mean concentrations, Ci 
and C2, and the differential refractive increments, 
Ri, are defined by equation 7C. Solute fractions 
on the basis of refractive index are defined by 

a, = S1ACZAH (25) 

and 
Ct1 = R2AC1ZAn (20) 

where Aw is the total difference in refractive index 
across the boundary 

Are = .R1AC1 + S2AC2 (27) 

vSubstitution of equations 22 and 23 for Ci and C2 

into equation 24 and use of equations 25 and 26 
leads to the required expression for the refractive 
index 

(20) Equations 22 and 23 can aiso be derived by first expressing 
each concentration, Ci, as a Taylor expansion in its cross-terra dif
fusion coefficient, Di j . Substitution of these expansions into the 
corresponding differential equations (5 and 6) yields a separate dif
ferential equation for each coefficient in the expansions; these are 
then integrated subject to the boundary conditions for free diffusion. 
If systems containing more than two solutes were being considered, 
this approach might be more convenient than the one followed above. 
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n = m + ( ~ ) Jr1H(Z11) + T2H(Z22) + 

D12D2, f / z„ \ 

-OS,)*™]+ 
i n w h i c h 

r 
, (RJR2)Dn , (RJRi)D2 

Ot1 + a2 :=r jc h a! -D11 - D; 

((X2-Ot1 

(R2ZR1)D21 

D2. 
+ a. 

D11 - D22 

, D12D21 

' (D11 - D, 
(RJR2)D12 

+ 

D11 ' "-D: - D11 

D21D12 

(D2; D11)-

+ 

+ 

(28) 

(29) 

(30) 

A n i m p o r t a n t p r o p e r t y of t h e s e f u n c t i o n s w h i c h 
wil l b e useful l a t e r is 

T1 + T2 = 1 (31) 

T h e R e d u c e d H e i g h t - A r e a R a t i o . — T h e ser ies 
exp re s s ion for t h e r e f r a c t i v e index , e q u a t i o n 28 , 
will n o w b e u s e d t o r e l a t e t h e four diffusion coef
f ic ients t o a n a c c u r a t e l y m e a s u r a b l e q u a n t i t y , 35 A, 
w h i c h w e ca l l t h e reduced height-area ratio 

(An)" 
®A = 4^[(dre/d*)(2] (32) 

T h i s e q u a t i o n is t h e b a s i s for t h e " m a x i m u m 
h e i g h t - a r e a m e t h o d " 2 1 - 2 3 u s e d t o a n a l y z e re f rac 
t i v e i n d e x g r a d i e n t c u r v e s in free diffusion. I t 
s e e m s d e s i r a b l e t o g ive a d i s t i n c t i v e n a m e a n d s y m 
bol t o t h i s e x p e r i m e n t a l q u a n t i t y b e c a u s e , w h e n t h e 
flows i n t e r a c t , t h e n u m b e r c a l c u l a t e d u s ing e q u a 
t i on 32 r e p r e s e n t s n e i t h e r t h e diffusion coefficient of 
a s ingle s o l u t e n o r a s i m p l e a v e r a g e diffusion co
efficient.2 4 A series r e l a t i o n b e t w e e n 3 5 A a n d t h e 
four diffusion coefficients is d e r i v e d b y u s i n g 
e q u a t i o n s 4, 14 a n d 15 t o o b t a i n t h e express ion 

/dn\ = _A 
\bx), 2\ 

dre 
VtAy 2VtIVD11KdZ11Jzn 

S u b s t i t u t i o n of t h e d e r i v a t i v e s of n w i t h r e s p e c t t o 
Su a n d 222 f rom e q u a t i o n 2 8 y i e ld s a n e q u a t i o n for 
( d » / d x ) f . B e c a u s e we h a v e a s s u m e d t h a t e a c h 
Dij is c o n s t a n t t h r o u g h o u t t h e b o u n d a r y , t h i s ex
p res s ion is f o u n d t o b e a n e v e n f u n c t i o n of x. 
F i n a l l y , a n express ion for [ (2 )« /3x) ( ] m a x . is o b t a i n e d 
b y s e t t i n g 2 5 x = zn = 222 = 0, a n d a f t e r s u b s t i t u t -

(21) O. Wiener, Wied. Ann., 49, 103 (1893). 
(22) O. Lamm, Nova Acta Regiae Soc. Sci. Upsaliensis, Series TV, 10, 

No. 6 (1937). 
(23) O. Quensel, Dissertation, Uppsala, 1942. 
(24) The reader will note that the script symbol, D, is reserved for 

quantities which are defined directly in terms of measurable properties 
of the refractive index gradient curve for free diffusion. Thus equa
tion 32 defines the reduced height-area ratio, £>A, and equations 29C 
and 30C define the reduced second moment, £>2m, and the reduced 
fourth moment, X)|m, respectively. The form of other equations re
lating these quantities to the actual diffusion coefficients for the system 
depend on the nature of the system, i.e., whether there are two or 
more components and whether the flows interact (see equation 34, 
equation 10 of ref. 3 and equations 27a and 28a of the companion 
paper). 

(25) This condition for a maximum in the {on/ox)t versus x curve is 
obtained because our discussion is limited to those curves for which 
(d2K/d*2); = 0 at only one point in the region — m < x < -f- a=. 
Without this limitation equation 32 would have to be more carefully 

i ng i t i n t o e q u a t i o n 32 we o b t a i n t h e des i red r e l a t i on 

\ i r r , Di2D21 

VVbTX1+"1 2Du(D22-
i r „ , -D21D12 

D A = 

VD2.. 
T2 + a2 2D22(Dn - D: 

D11) 

+ 

+ + 

- ] (34) 

T h e o r y : G o u y Di f fus iometer 

T h r o u g h o u t t h e a b o v e d e r i v a t i o n s , e q u a t i o n s 
w e r e p r e s e n t e d in f o r m s w h i c h , a f t e r s o m e specia l iz
a t i o n , a r e of u s e for a n y a p p a r a t u s m e a s u r i n g free 
diffusion w i t h sufficient a c c u r a c y . T h e s e a n d 
o t h e r r e l e v a n t express ions will n o w b e u s e d t o 
o b t a i n e q u a t i o n s w h i c h a p p l y t o t h e G o u y dif
f u s i o m e t e r . 3 ' 2 6 - 2 8 

R e d u c e d H e i g h t - A r e a R a t i o . — F o r t h i s a p p a 
r a t u s e q u a t i o n 32 b e c o m e s 2 6 - 2 9 

_ 0'mX&)2 

D A : (35) 

I n t h i s e q u a t i o n , w h i c h is ba s i c for G o u y diffusi
o m e t e r m e a s u r e m e n t s , j m is t h e t o t a l n u m b e r of 
f r inges 

j m = aAn/X (36) 

a is t h e d i s t a n c e b e t w e e n t h e cell w i n d o w s , a n d A 
is t h e w a v e l e n g t h of t h e m o n o c h r o m a t i c l i gh t . 
M e a s u r e m e n t s of t h e o p t i c a l l eve r arm, 2 7 ' 3 0 b, a r e 
re fe r red t o t h e r e f r a c t i v e i ndex of a i r a s u n i t y , 
p r o v i d e d t h e v a l u e of A is a lso re fe r red t o a i r . A n 
e x t r a p o l a t i o n p r o c e d u r e for o b t a i n i n g t h e g r e a t e s t 
d o w n w a r d d i s p l a c e m e n t of l i gh t , Cu p r e d i c t e d b y 
g e o m e t r i c a l o p t i c s a t t h e t i m e t, is de sc r ibed be low . 
Va lues of 3DA o b t a i n e d f rom e q u a t i o n 35 a r e r e l a t e d 
t o t h e four diffusion coefficients b y e q u a t i o n 34 , 
p r o v i d e d t h a t o n e of t h e t w o c r o s s - t e r m diffusion 
coefficients is sufficiently sma l l t o i n s u r e sa t i s 
f a c t o r y c o n v e r g e n c e of t h i s ser ies express ion . 

Fringe D e v i a t i o n G r a p h s . — D e v i a t i o n s of a 
( s y m m e t r i c a l ) r e f r ac t i ve i n d e x g r a d i e n t c u r v e 
f rom G a u s s i a n s h a p e c a n b e r e p r e s e n t e d c o n v e n i 
e n t l y b y a f r inge d e v i a t i o n g r a p h w h i c h is i n d e 
p e n d e n t of t i m e . A s in t h e case of n o n - i n t e r a c t i n g 
flows,3 t h e first s t e p in o b t a i n i n g s u c h a g r a p h is t o 
c a l c u l a t e t h e r e d u c e d fr inge n u m b e r s 3 1 

Ht i) = 
( i + 4 + 

jm 
(37) 

for s e v e r a l f r inge m i n i m a , j (j = 0 ,1 ,2 , . . . c o u n t i n g 
f rom t h e b o t t o m of t h e G o u y p a t t e r n u p w a r d ) . 
P r o v i d e d t h e b o u n d a r i e s a r e s y m m e t r i c a l a s a s 
s u m e d , t h e l i gh t i n t e n s i t y is zero a t e a c h m i n i m u m . 
T h e A i r y i n t e g r a l a p p r o x i m a t i o n 3 2 Zj, for t h e series 

defined. An interesting diffusion photograph of a refractive index 
gradient curve with two maxima was published by Longsworth ("Elec
trochemical Constants," National Bureau of Standards Circular 524, 
1951). In that experiment one diffusing solute had a large negative 
concentration gradient. 

(26) L. G. Longsworth, T H I S JOURNAL, 69, 2510 (1947). 
(27) G. Kegeles and L. T. Gosting, ibid., 69, 2516 (1947). 
(28) L. J. Gosting and L. Onsager, ibid., 74, 6066 (1952). 
(29) This relation may be obtained by substituting equation 36 and 

the definition of Ct (equation 39e) into equation 32. 
(30) See footnote 27 of ref. 3. 
(31) The function f(f) is defined (equation 12 of ref. 27) by 

f (f) = -7= u: e~P A& - fe~f! •] (37a) 

(32) L. J. Gosting and M. S. Morris, T H I S JOURNAL, 71, 1998 
(1949). 
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U + 3 A + . . .) is adequate when j m is large.28 '33 

Numerical evaluation of the dependent variable, 
f, is unnecessary; by means of tables, one obtains 
from f(£/) an "ideal" reduced fringe displacement, 
e_ f 2 ' , corresponding to a Gaussian refractive index 
gradient curve with the same number of fringes, j m , 
as the boundary under consideration. From this 
quant i ty and the actual downward displacement, 
YJ, of fringe j , the relative (i.e., reduced) deviation 

iii = (e -Ii' - YjIC1) (38) 

of tha t fringe is easily computed and several such 
values plotted against f(&) to obtain the desired 
fringe deviation graph. 

Series expansions relating these graphs to the dif
fusion coefficients have been derived3 for the case of 
non-interacting flows. With the restriction tha t 
one cross-term diffusion coefficient must be small, 
similar relations will now be obtained between 
these graphs and the diffusion coefficients for three-
component systems with interacting flows. Sub
stitution of equation 28 for the refractive index into 
the general interference condition for fringe minima 
yields the result3435 

f(f,) = [r,f(zn),- + r,f(Z22)y + . . . ] = 
U + 3/4 + ^ ) ^ Z1 

Jm Jm 

and the reduced fringe displacement for this case 
becomes35 

Y1 = [ ( r i / y^e - (Sn) / ? + (r3/v/A"2)g-<'»)j8 + . - • 1 
Ct [(ri/V7AO + ( IyVST 2 )+ . . . ] 

(40) 
(33) See footnote 25 of ref. 3. 
(34) The first equality is included only to emphasize the definition 

of f(fj)i equation 37; the second equality is the desired interference 
condition. 

(35) Derivation of this interference condition from the general 
theory of the Gouy method, ref. 28, may be outlined as follows. The 
notation in ref. 28 will be used without further definition, and equations 
in it will be referred to directly by including a letter T with the equa
tion number. Starting with equation 46T for the light intensity 
distribution in Gouy fringes from any symmetrical refractive index 
gradient curve (having a single maximum, see ref. 25), we obtain in
tensity minima by setting I[Y) equal to zero as before. However, the 
general maximized phase function *(*2) is retained, so by using equa
tions 35T and 42T we may solve for a general interference condition 

x 4 TrV-i S TT \ V i / 

instead of condition 59T for a Gaussian boundary. Then an expres
sion for $(X2) in terms of n is obtained by first setting the first derivative 
of Q(X), equation 4T, equal to zero 

Y = ab(dn/dx), ( 3 9 b ) 

which is one derivation of the ray optical relation for light displace
ment by a refractive index gradient. Substitution of this relation into 
equation 4T yields the maximized phase function 

^ «*>- (£ ) (> - **> - * ( £ ) ] « , (S9c). 
By combining equations 39a and 39c, and associating x = Xi with J, 
we obtain the interference condition 

(!;)[<—•>-(£)!-
(i + l + ••)«.-Ji <3M) 

Dividing equation 39b by the definition 

Q = ab[(dn/bx)t]m*x (39e) 
provides an expression for the reduced fringe displacement 

Y1 = [(dn/dx\]j 
Ci [(dn/dx),]^^ 

Equations 39 and 40 are then obtained by substituting first equation 33, 
and then equation 28, into equations 39d and 39f, respectively. 

In these equations higher terms (represented by 
+ . . .) of the three series in brackets correspond to 
the two terms of order D\«D-n 

5^1I[-te)H'^--G£)HH (41) 

and to some of the higher terms, in equation 28. 
Neglecting the terms not shown in equations 39 and 
40, these equations become identical in form with 
the two corresponding relations for three-compo
nent systems without interacting flows (equations 8 
and 6 of ref. 3). The previous expressions3 derived 
for Qj then become applicable to the present case by 
simply replacing a, and a2 by T1 and F2 (since T1 + 
F2 = 1, equation 31) and Dx and D2 by D1x and D22. 
Thus equations 13 and 23 of tha t theory become 

r2 = DnZD22 (42) 
and 

<2 = r2F(f,r2) - HG(Sv2) -f . . . (43) 

The subscript j has been omitted because we are 
interested in the general functional dependence of 
Q on f, rather than consideration of a particular 
fringe. This series expression is useful when T2 is 
small because then it converges rapidly. The func
tions F(f, r2) and G(f, r2) were tabulated previ
ously.36 If Ti, instead of F2, is small, we obtain a 
rapidly convergent expression for 0 by simply re
placing 2 by 1 and 1 by 2 in equations 42 and 43. 

n = A2ADiI (44) 
v. = r.Ftf.ri) - rfG(f,n) + . . . (45) 

Further, equation 27 of the previous theory8 be
comes, for the present case of interacting flows 

fi = T2(I - Ti)PeS' (Vh - D2 + \ T2(I - T2)I(I -

ST2) - 2f2(l - 2T2)] PeS2WT2 - I)3 + . . . (46) 

This expression is useful whenever r2 is near unity 
because then it converges rapidly regardless of the 
values of Ti and F2. 

Extrapolation Procedure for Obtaining C,.— 
The procedure for obtaining3 Ct when the solute 
flows do not interact is equally applicable when the 
two solute flows do interact, provided higher terms 
are not required in equations 39 and 40; tha t is, 
provided the terms in expression 41, as well as higher 
terms, can be neglected in equation 28. Thus each 
Q is obtained by extrapolating a plot of YJe~^' 
versus Z / / 3 to Z / / ! = 0. When equation 28 does 
not converge satisfactorily this extrapolation still 
provides a convenient empirical method for obtain
ing Ci; however, its validity for this case must not 
be considered proven. 

Moments.—In a companion paper16 relations 
are derived (equations 34C-37C) for computing the 
four diffusion coefficients from values of the re
duced second and fourth moments measured in 
two free diffusion experiments. In both experi
ments the mean concentration of a given solute 
must be identical. A general procedure has already 
been given3 for evaluating these moments from 3DA 
and the fringe deviation graph. To be consistent 
with the present notation, the previous expres
sions37 for the r th even moment (r = 2, 4, . . .) are 
rewritten 

(36) Tables I and II of ref. 3. 
(37) Equations 38 and 39 of ref. 3. 
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(47) 
in which 

The integrals, which are small compared to unity, 
are evaluated graphically from the heights and 
slopes of the curve Q versus f(£"). The functions of f 
required for r = 2 and r = 4 have been tabulated.38 

Experimental 
The Gouy diffusiometer described previously39'40 was used 

for all experiments. Measurements were made with the 
5460.7 A. mercury line isolated from a G.E. A-H4 lamp with 
a Wratten 77A filter. Because the design of cell holders 
was improved during the course of these diffusion measure
ments, three different cell holders, each with a separate 
Tiselius cell 9 cm. in height, were employed. Values for the 
cell dimensions, a, and the optical lever arms, b, are tabu
lated below. The values for b are relative to gage blocks 

TABLE I 

OPTICAL CONSTANTS FOR THE APPARATUS 
Cell" a, cm. b, cm. 

GA 2.4862 307.88 
SB 2.5103 306.86 
SD 2.5062 306.86 

" For each cell, the arm of better optical quality was used 
throughout. 

which had been calibrated at 68 0 F. as had also the Gaertner 
M2001RS toolmaker's microscope used to measure the 
photographic plates. In all experiments six sets of photo
graphs were employed to determine the reference correc
tion32'41 8. The fused silica cells SB and SD were mounted 
in improved cell holders, which maintained the center sec
tion of the cell in a fixed position relative to the cell holder 
and mask assembly. These two cells gave more reproduc
ible values of S than did the glass cell GA, which was mounted 
so that (when opening the cell) its center section was moved 
relative to the cell holder and masks. Previous papers3'26'40'41 

have described experimental procedures which are now 
used to obtain the reduced height-area ratios, 35A (equa
tion 35), the fringe deviation graphs3 (equation 38) and 
the second and fourth reduced moments, 332m and 35L 
(equation 47, and equations 29C and 3OC, C denoting the 
companion paper16). In no experiment was the starting time 
correction,26 At, greater than 19 sec. Using a series form of 
the Stokes-Einstein relation 

( S A ) 2 5 = ( S U M l + 0.0264(25 - T) + . . . ] (49) 

the values of D A were corrected to 25.00o° using tempera
tures, T, read from mercury-in-glass thermometers which 
had been calibrated against a certified platinum resistance 
thermometer. During each experiment, which was al
lowed to proceed until T\t — 0.15, the temperature did not 
differ from 25° bv more than 0.005° and was constant to 
±0 .002° . 

Materials.—Three strong electrolytes, potassium, sodium 
and lithium chlorides, were used in these experiments. The 

(38) Table IV of ref. 3. 
(39) L. J. Costing, E. M. Hanson, O. Kegeles and M. ,S. Morris, 

Rev. Sci. Instruments, 20, 209 (1949). 
(40) P. J. Dunlop and L. J. Costing, T H I S JOURNAL, 78, 5073 

(1953). 
(41) 1.. J. Costing, ibid., 72, 4418 (1950). 
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sodium chloride, reagent grade, was precipitated once by 
the addition of hydrogen chloride gas to a saturated solu
tion of the salt in conductance water. The potassium and 
lithium chlorides, also reagent grade, were once recrystallized 
from conductance water by making use of the change in 
solubility of the salts with temperature.42 All three salts 
were then drained centrifugally and dried in vacuo at 80°. 
The potassium and sodium chloride samples were fused 
in a platinum crucible and broken up in an agate mortar. 
Because of the deliquescent nature of the lithium chloride, 
each portion used to make up solutions was dried, at the 
time of weighing, to constant weight in vacuo at 80°. 

Solutions.—All solutions were prepared by weight using 
doubly-distilled water, saturated with air, as solvent. The 
weight fraction of each solute, corrected to vacuum, was 
converted to the corresponding molarity, C, using values of 
74.557, 58.454 and 42.397 for the molecular weights of po
tassium, sodium and lithium chlorides, respectively. For 
solutions of single salts the required solution densities, d, 
at 25° were obtained using a value of 0.997075 g. /ml. for 
the density of water and the following apparent molal vol
umes,43 4>, in ml. per mole. 

*KCI = 26.52 + 2.327VC (50) 

^NaCi = 16.40 + 2 .153VC (51) 

0LiCi = 17.00 + 1.488VC (52) 

Densities were measured for most of the mixed solute solu
tions. Three 30-ml. Pyrex pycnometers, filled to measured 
positions in their capillary necks, were employed in all cases. 
For all mixed solute solutions, densities were also computed 
from equations 50, 51 and 52 and the relationship for the 
volume, V 

2 

V = ATo P„° +Y,Nk<t,k (53) 
k = i 

where Nt is the number of moles of each solute present in 
solution and VS is the volume of a mole of the pure solvent 
at 25°. It was found that good agreement was obtained 
between the experimental and computed values of d only 
when each fa was calculated by substituting in equations 
50-52 the sum (Ci + C2) of the salt concentrations, instead 
of each individual C* value; this procedure was followed in 
calculating the values of dcaj. in Tables I I I and IV. 

Results 
Single Solutes.—Diffusion experiments were per

formed with these lithium and sodium chloride 
samples, both at the same mean solute concentra
tions (C1LiCi = 0.25, C1NaCi = 0.2) and at the same 
mean ionic strengths (/* = 0.45) used in the mixed 
electrolyte experiments. Similar data for potas
sium chloride are available elsewhere.41 It is 
hoped that with additional theoretical develop
ments these data, presented in Table II, will even
tually be useful for further interpretation of the 
mixed electrolyte experiments. 

Although the diffusion coefficients for sodium 
chloride are in excellent agreement with those of 
Stokes,44 the lithium chloride data are one per cent, 
lower than the results he reported.44 

Experiments I and II were performed with the 
same solutions but in two different cells and cell 
holders: the diffusion coefficients, D, and the molar 
refractive increments, An/AC, are in excellent 
agreement. That the value of An/AC obtained in 
experiment III is 0.15% lower than the values in 

(42) Analysis with a Beckman DU flame photometer with a photo-
multiplier attachment showed the potassium chloride sample (pre
pared previously, ref. 3) to contain less than 0.05% of sodium. A 
similar analysis indicated that the lithium chloride contained less 
than 0.005% of sodium; potassium was not detected. 

(43) H. S. Harned and B. B. Owen, "The Physical Chemistry of 
Electrolytic Solutions," 2nd Ed., Reinhold Publ. Corp., New York, 
N. Y., 1950, p. 253. 

(44) R. H. Stokes, THIS JOURNAL, 72, 2243 (1950). 
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TABLE II 

DATA FOR THE SINGLE-SOLUTE DIFFUSION OF LITHIUM AND 

SODIUM CHLORIDES IN AQUEOUS SOLUTION AT 25° 

Exp . SoI-
n o . " Cell u t e 

C AC 
moles /1 , moles /1 . J i " 

D 
An x 1 0 s , 
AC c m . ! / 

X 10» sec. 
I GA LiCl 0 . 2 4 9 S 0 0 . 2 0 3 4 0 83 .44 H.010 1.25Oi 
II SB LiCl .24980 . 2 0 3 4 0 8 4 . 2 6 9 .011 1 .257 0 

I I I GA LiCl .2502C) , 1 0 0 6 2 4 1 . 2 1 8 .996 1 .25S 1 

V I I I GA LiCl .14998 .200O n 8 2 . 8 8 9 .102 1.2597 
I X S D LiCl ,450O2 .200O5 8 1 . 3 8 8 .886 1.263<) 
X I SB N a C l . 1 9 9 9 8 .1999g 9 2 . 2 8 10 .037 1 . 4 7 8 ; 
X I V SB X a C l . 4 4 9 9 6 .200O 7 9 0 . 3 1 9 . 8 1 9 1 .473] 

" In this paper Roman numerals not only designate ex
periments but also indicate the order in which they were 
performed. 

experiments I and II , with the same mean concen
trations, is believed to be beyond the limit of ex
perimental error and due to the smaller value of AC. 
This would indicate a small deviation from linearity 
in the dependence of n on C. Because this effect 
is relatively small, we will neglect it in the mixed 
solute experiments and use the symbol Ri for the 
differential refractive increments interchangeably 
with An/ACi for the finite refractive increments. 

Figure 1 shows fringe deviation graphs8 for these 
two solutes. In this and subsequent figures, dots 
indicate the individual experimental values of the 
reduced fringe deviations, Q, (equation 3S), ob
tained from the several Gouy photographs for each 
reduced fringe number f(f) (equation 'AT). The 
crosses represent the averages of the experimental 
points. T h a t the average value of Q, a t each value 
of f(<r), is approximately zero, indicates tha t the re
fractive index gradient curves were Gaussian 
within the error of measurement. A fringe devia
tion graph for the potassium chloride sample, used 
in the mixed solute experiments reported below, 
has been given previously.3 

10-
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Fig. 1.—Fringe deviation graphs for the diffusion of LiCl and 
of XaCl. 

Mixed Solutes with Interacting Flows.—Data 
are presented in Table I I I for a group of diffusion 
experiments in which lithium and potassium chlo
rides were both present in the upper and lower 
solutions, A and B, used to form the initial bound
ary. vSimilar da ta are reported in Table IV for a 

second group of experiments in which lithium and 
sodium chlorides diffused simultaneously. Because 
the diffusion coefficients are expected to vary some
what with concentration, the mean concentration, 
Ci, as well as G, was made the same in all experi
ments of each group. The experiments of each 
group differ primarily in their values of ai and a2, 
the fractional concentration increments on the 
basis of refractive index. Fringe deviation graphs 
for the experiments, Figs. 2, 2a and 3, provide a 
measure of the deviations of each refractive index 
gradient curve from Gaussian shape. As will be 
seen later, when either a\ or a2 (equations 25 and 2(5) 
is zero these graphs can be used directly to detect 
any interaction existing in the solute flows. 

In the first line of each table are the experiment 
numbers; the cells used are recorded in the next 
line. Concentrations, d, and densities, d, of solu
tions A and B used in each experiment are reported 
in lines 3 to 10. Good agreement is seen to exist 
between the pycnometrically measured densities, 
dexl>., and the values, dcai., computed from equa
tions 50-53_as described in the experimental section. 
Values of C, and AC,-, lines 11-14, were obtained 
from the concentration da ta using equations 11 and 
12. To calculate the a;, lines 17 and 18, from the 
concentration differences AC,-, values were required 
for the differential refractive increments, Ri, equa
tion 7C. The experiments best suited for these 
computations were VII , X, X I I and X I I I , in which 
the refractive index differences between solutions 
A and B were due almost entirely to one salt. The 
small amount contributed by the other salt to the 
total number of fringes, line 15, was easily approxi
mated and subtracted from j m . This gave a cor
rected J,,,, line 15 in parentheses, due entirely to tha t 
salt with a large value of AC. Using equations 3(5 
and 7C, each Rt shown at the bot tom of each table 
was then computed from its corrected j m - T h a t 
these values of Ri are applicable within each group 
of experiments can be seen by comparing the experi
mental j m values, line 15, with those calculated, 
line 16, by substituting the individual Ri and AC,-
into equations 27 and 36. 

To obtain the reduced height-area ratios, line 19, 
using equation 35, Ct was evaluated for each photo
graph by plotting Yj/e~^' versus*1* Z/''' and extrap
olating to Z / / s = 0. This extrapolation procedure 
used previously for mixed solutes without interact
ing flows,8 was shown in the theoretical section "Ex
trapolation Procedure for Obtaining C" to be valid 
for the case of interacting flows, provided all terms 
other than the first three terms of equation 28 are 
negligible. The experiments with mixtures of 
lithium and potassium chlorides, which satisfy 
this requirement, gave good straight lines in the 
extrapolations. I t is of interest tha t the experi
ments with mixtures of lithium and sodium chlo
rides also gave straight lines within experimental 
error, even though the convergence of equations 29 
and 30 is very poor. A representative extrapola
tion for this system is shown in Fig. 4. The reduced 
second moments and the reduced fourth moments, 
lines 20 and 21, were calculated using the values of 
T A , the fringe deviation graphs and equation 4.7. 

(45) Values of Z.]1 / : i were given in T a b l e I I I of ref. 3. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 

16 
17 
18 
19 
20 
21 

Exp. no. 
Cell 
(CLiCl) B 

(CKCJ)B 

(dex]>.)h 

(deal.) H ' 

(CLiCl)A 

(CKCI)A 

(<2OXI).)A 

( ^ C H O A ' 

CLiCl 

C K C i 

A C L i Ci 

ACKCI 

jm(exp.) 

im(cal.) 
a L i c i 

aKCi 

£>A X 105 

3)2m X 105 

DL X 10" 
Ruci = 

:ENTS IN WHICH 

IV 
GA 
0.26237 
0.30002 
1.01736 
1.01737 
0.23785 
0.10000 
1.00757 
1.00760 
0.25011 
0.200Ol 
0.02452 
0.20002 

98.67 

98.66 
0.1002 
0.8998 
1.7488 
1.7651 
3.1366 

= 8.857 X 10"3 

TABLE III" 

LiCl AND KCl DIFFUSED SIMU 

V 
GA 

0.34978 
0.21846 
1.01569 
1.01571 

0.15006 
O.I8I04 
1.00922 
1.00926 
0.24992 
0.200Oo 
0.19972 
0.03692 

96.89 

96.92 
0.8309 
0.1691 
1.3891 
1.4441 

2.1965 

VI 
GA 
0.35002 
0.21861 
1.01572 
1.01573 
0.15008 
0.1814? 

1.00925 
0.25005 
0.20004 
0.19994 
0.03714 

97.09 

97.11 
0.8303 
0.1697 

1.3893 
1.4421 

2.1853 

RK 

VII 
GA 
0.3500Q 
0.200Oo 
1.01489 
1.01488 
0.14998 
0.19998 

1.01010 
0.24999 
0.19999 
0.20002 
0.00002 

80.67 
(80.66)" 
80.67 

0.9999 
0.0001 
1.3194 
1.3654 
1.9351 

= 9.748 X 10~3 

X 
SD 
0.25003 
0.30004 
1.01710 
1.01708 
0.24985 
0.09997 

1.00788 
0.24994 
0.20000 
0.00018 
0.20007 

89.58 
(89.51)c 

89.58 
0.0008 
0.9992 
1.8099 

1.8099 
3.2757 

" Units in Tables III and IV: concentrations, C, moles/1.; densities, d, g./ml.; reduced height-area ratios, £>A, and re
duced second moments, ®2m, cm. 2 / sec; reduced fourth moments, "t>im, (cm.2/sec.)2. * Calculated using equation 53. 
' For experiments VII and X the values in parentheses have been corrected to ACKCI and ACLICI, respectively, equal to zero 
(see text). 

TABLE IV 

DATA FROM EXPERIMENTS IN WHICH LiCl AND NaCl 

DIFFUSED SIMULTANEOUSLY IN WATER AT 25° 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 

16 
17 
18 
19 
20 
21 

E x p . no . 
Cell 
(CLiCl)B 
(CNaCl)B 
(rfexp.)B 
(<W.)B" 
(CLiCl)A 
( C N » C I ) A 

(dexp.)A 
(d0z\.)Aa 

CLiCI 
CNaCl 
ACLiCl 
ACNaC 1 

jmiexp.) 

Jm(CaI.) 

OLiCl 
"NaCl 
» A X 10= 
Dim X 10» 
®'m X 10'» 

X I I 
SB 
0 .250O 4 

0 .29996 
1.01531 
1.01531 
0 .250Oi 
0 ,100O 4 

1.00730 
1.00730 
0 .25002 
0.200Oo 
0.OOOO3 
0 .19992 

9 0 . 5 4 
( 9 0 . 5 3 ) 6 

9 0 . 5 4 
0 . 0 0 0 2 
0 . 9 9 9 8 
1.4482 
1.4447 
2 . 0 7 O 6 

^LiCi - 8.; 

X I I I 
S B 
0 . 3 5 0 0 3 
0 . 2 0 0 O 6 

1.01371 
1.01370 
0 .150Oi 
0.200Oo 
1.00891 
1.00893 
0 .250O 2 

0 . 2 0 0 O 3 

0 .200O 2 

0 .000O 6 

8 1 . 5 7 
( 81 .S4 ) 6 

8 1 . 5 7 
0 . 9 9 9 7 
0 . 0 0 0 3 
1 . 3 0 3 0 

1 . 3 2 I 2 

1 . 7 7 9 0 

868 X 10"» 

X V 
SB 
0 . 2 7 9 7 4 

0 . 2 7 3 9 6 

1.01499 
1.01498 
0 . 2 2 0 I g 
0 .12554 
1.00760 
1.00761 
0 . 2 4 9 9 6 

0.1997.5 
0 . 0 5 9 5 5 
0 . 1 4 8 4 2 

9 1 . 5 2 

9 1 . 4 8 
0 . 2 6 5 4 
0 . 7 3 4 6 
l - 4 0 7 5 

1 . 4 0 7 5 

1 . 9 8 I 0 

X V I 
SB 
0 . 3 2 4 9 5 
0 . 2 2 9 0 3 
1.01424 
1.01426 
0 .17499 
0 . 1 7 1 O 3 

1.00835 
1.00836 
0 .24997 
0 . 2 0 0 O 3 

0 . 1 4 9 9 6 

0.058Oo 

8 7 . 3 9 

8 7 . 4 0 
0 .6995 
0 . 3 0 0 5 
1 . 3 4 2 4 

1.3527 
1 .846 6 

-RNaCl = 9.850 X 10 

* Calculated using equation 53. h For experiments XI I 
and XI I I the values in parentheses have been corrected to 
ACLICI and ACN1CI, respectively, equal to zero (see text). 

Before discussing the relation of the diffusion co
efficient Dn, Du, D2i and D22 to the deviation 
graphs, numbers must be assigned to the compo
nents. When lithium and potassium chlorides 
were present together in solution we denote lithium 
chloride by 1 and potassium chloride by 2; when 
lithium chloride and sodium chloride were the sol
utes, lithium chloride is denoted by 1 and sodium 
chloride by 2. This notation will be used throughout 
the remainder of this paper. 

By inspection of the fringe deviation graphs for 
experiments in which either concentration incre
ment was zero, Figs. 2 and 3, it is possible to see 
whether interaction of the solute flows was signifi
cant. The solute with zero concentration incre
ment does not diffuse unless the flows interact, in 
which case the fringe deviations measure flow in
teraction. In such experiments the algebraic signs 
of fringe deviations are directly related to the signs 
of the ratios DnZ(Dn — D22) and D2xZ(D22 — Dn), 
provided these ratios are small enough to ensure the 
applicability of the theory for the deviation graphs. Of 
the four experiments (VII, X, X I I and X I I I ) for 
which either ACi or AC2 was approximately zero, 
only X had fringe deviations equal to zero. This 
Gaussian refractive index gradient curve could 
have been produced only by diffusion of the potas
sium chloride alone, without any resulting flow of 
the lithium chloride; consequently for this system 
Du — 0 in equation 1. 

The fringe deviations for the other three experi
ments are not zero, indicating interaction of the 
flows. Interpretat ion of the algebraic signs of these 
fringe deviations is based on the quantities I \ and 
T2 defined by equations 29 and 30. The smaller 
of these two quantities for a given experiment has 
the same sign as the fringe deviations, as seen 
from either equation 43 or 45. From the defini
tions of Ti and T2 we then obtain the following rule 
for interpreting the deviation graphs assuming tha t 
R\/Ri is positive: when «i is zero Di2Z(Dn — D22) 
has the same algebraic sign as the fringe deviations; 
when Qf2 is zero D2J(D22 — Dn) has the same alge
braic sign as the fringe deviations. Thus in experi
ment VII , for which the fringe deviations are positive 
and a2 — 0, we deduce tha t D2i/'(D22 — Dn) should be 
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tures: X, average experimental values. Curves were cal
culated from the values of the diffusion coefficients in 
Table VI: — , first term of equation 40; , both terms of 
equation 4(5; O, exact values from equation 38-40. For 
comparison, the dotted curve (exp. X) corresponds to 
(R,/'Ri)D12 = +0.000 X K)"5. 
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Fig. 2a.—Fringe deviation graph for an experiment de
signed to check experiment V. 

positive, in agreement with the numerical results 
calculated below from the reduced moments and re
duced height-area ratios. I t should be noted tha t 
the signs of the cross-term diffusion coefficients, D12 

and D21, cannot be determined by inspection of the 
deviation graphs without independent knowledge of 
the relative magnitudes of D11 and D22. I t is of 
interest tha t the signs of D12Z[Dn — Z)22) and D2x/ 
(D22 — D n ) for experiments X I I and X I I I can also 
be predicted from the deviation graphs by using 
the above rule, even though these ratios are found 
later to be so large tha t the series expansions for 
F1 and T2 do not converge. 

The fringe deviation graphs also provide evidence 
for the assumption, made in the theory, tha t the 
variables x and / always occur in the ratio „v/\/7-
In every experiment it was found tha t the values of 
0 a t each f (fj) showed no significant drift with time. 
Therefore each value of Yj/Ct was time independ
ent, and because G V / was constant it follows tha t 
Yj\/f for each fringe was also independent of 
time (subject to the validity of the small starting 
time correction, A/). Hence, from equation 39b 
the quanti ty [ ( d » / d x ) , ] v ' = dn/d(x/\/T) was con
stant for each fringe, thus supporting the assump
tion tha t the solute concentrations are functions of 
the variable .v v'7-

(a) The LiCl-KCl System.—Two methods were 
employed to compute values of the diffusion co
efficients corresponding to the mean solute con
centrations. First they were obtained from the 
second and fourth reduced moments by use of the 
theory presented in the companion paper, and then 
they were also computed from the values of T A , 
0I, d2 and the fringe deviation graphs. 

In columns 2 and 3 of Table V are reported values 
of B1 and O2, the linear combinations of diffusion co
efficients defined by equations 25C and 26C. They 
were computed by substituting the a-, and reduced 
moments, Table I I I , into equations 31C and 32C. 
To obtain reasonable accuracy, only those pairs of 
experiments indicated in column 1, for which 
{«•))] — (a->)ji: >0.7 , were selected. Similarly, 

the values for D11, (R1 R2)D12, (R2ZR1)D21 and D2: 

were computed from the same pairs of experiments 
by substituting the individual values of O1, 62, a,, 
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VALUES OF B1, B2 AND THE FOUR DIFFUSION COEFFICIENTS CALCULATED FROM THE REDUCED MOMENTS FOR THE LiCl-KCl-

l 
E x p s . 
used 

VII : X 
IV: VII 
V : X 
VI: X 
IV: V 
IV: VI 

Av. 

2 

0i X 105 

1.365 ± 0 
1.365 ± 
1.370 ± 
1.367 ± 
1.370 ± 
1.367 ± 

1.367 

.003 

.003 

.004 

.004 

.004 

.004 

H2O SYSTEM CLIC 

3 

e-2 x 105 

1.810 ± 0 
1.810 ± 
1.810 ± 
1.810 ± 
1.809 ± 
1.809 ± 

1.810 

.004 

.004 

.004 

.004 

.004 

.004 

= 0.25, CKOI = 

4 

Dn X 10 

1.206 ± 0 
1.206 ± 
1.141 ± 
1.155 ± 
1.136 ± 
1.151 ± 

1.172 

042 
042 
064 

.064 

.066 
.066 

0.2; e.g.s. units; T = 

(I)-X 
0.000 ± 0 

.010 ± 

.000 ± 

.000 ± 

.017 ± 

.015 ± 

0.006 

105 

066 
076 
067 

.067 
080 
079 

25° 

(I)-* x 
0.159 ± 0 

.159 ± 

.229 ± 

.212 ± 

.234 ± 

.216 ± 

0.195 

105 

039 
.039 
060 

.060 

.062 

.061 

7 

Da X 105 

1.810 ± 0.063 
1.800 ± .072 
1.810 ± .063 
1.810 ± .063 
1.792 ± . 076 
1.794 ± .075 

1.8O3 

a2 and the reduced moments into equations 34C-
37C. The estimated maximum errors were calcu
lated assuming that each reduced second moment 
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3.—Fringe deviation graphs for the LiCl-XaCl mix-

was known to ±0.2% and each reduced fourth 
moment to ±0.5%. These simplified assumptions 
probably magnify the estimated maximum errors. 
Firstly, these errors may be too large for experi
ments with small fringe deviations (expts. X and 
XV); secondly, small errors in the experimental 
fringe deviation graphs would cause both second 
and fourth reduced moments to deviate in the same 
direction, not necessarily in the directions which 
give the maximum errors as assumed. However, 
since it is believed that a comparison of the errors 
within any given column is significant, the averages 
in the bottom line of Table V were obtained by 
weighting the data according to the reciprocals of 
the estimated errors. It should be noted that O1 and 
82 are known much more accurately than the indi
vidual diffusion coefficients. Unfortunately, these 
values for the four diffusion coefficients do not re
produce the measured values of ©A and the fringe 
deviation graphs within experimental error. This 
difficulty is due to the high sensitivity of equations 
34C-37C to small errors in the reduced moments, 
and the following method was employed to obtain a 
set of diffusion coefficients which better represent 
these data. 

1.818 -

1.814 -

1.810 

Fig. 4.—A typical extrapolation for obtaining Ct for the 
LiCl-NaCl system. Data are for t = 3840 sec, experi
ment XVI. 

The first step in this calculation procedure was to 
estimate the uncertainty in (RJZR2)DI2 from the 
fringe deviations of experiment X. These values of 
Q are so close to zero that this calculation was quite 
insensitive to D11, D22 and (R2ZRi)D2I; hence values 
for these quantities were taken from Table V. 
Assuming that the values of Q do not exceed 
±0.0001 for this experiment, equation 46 (or 45) in
dicated that -0.006 ^ (R1ZR2)D12 ^ +0.006. 
From this range, a value of —0.006 was chosen 
because it provided the greatest possible values of 
£2max for the other four experiments (the fringe devi
ations calculated for these experiments from the 
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diffusion coefficients in Table V were all too small). 
Values of 1.369 X 10"5 and 1.811 X 10~5 were next 
assigned to Si and d2. This small increase from the 
values in Table V is well within experimental error 
and was made in order to increase further the calcu
lated values of 0max- From equation 26C a value 
of 1.817 X 10~5 was then obtained for D22. Using 
the three values of X^ from Table I I I for experi
ments V-VII , together with the values just pre
sented for 6\, (Ri/R2)D\2 and D22, equations 25C 
and 34 were solved numerically to yield 1.148, 
1.148 and 1.139, respectively, for Dn X 105. Ex
periments IV and X were not used because they are 
not sensitive to Dn and (R2/ Ri)D2I. From di and 
the arithmetical average of these values of Dn, 
(R2ZRi)D2I was obtained from equation 25C. The 
results of this calculation procedure are summarized 
in Table VI . Included in brackets are values for 
D\2 and D2i which were calculated by use of the 
differential refractive increments at the bot tom of 
Table I I I . 

TABLE VI 
VALUES OF THE FOUR DIFFUSION COEFFICIENTS CHOSEN TO 
REPRESENT BEST THE FRINGE DEVIATION GRAPHS AND 

REDUCED HEIGHT-AREA RATIOS 
CLICI = 0.25, CKCI = 0.2; c.g.s. units; T = 25° 

9i = 1.369 X 10-s 82 = 1.811 X 10-s 

Dn = 1.14g X 10 "5 Dii = I . 8 I 7 X 10-5 
(R2/Ri)D2i = 0 . 2 2 4 X 10-5 (Ri/RilDu - - 0 . 0 0 6 X 10"* 

\Di\ = 0 . 2 O 4 X 10-5] [D1 , = - 0 . 0 O 7 X 10-5] 

Estimation of the errors in the quantities in Table 
VI is difficult, but they are believed to be about 
±0.003 X IO"6 for <9i and Q2 and ±0 .01 X 10- 5 for 
the four diffusion coefficients. 

Using the four diffusion coefficients in Table VI 
and the values of a\ and a2 in Table I I I , equations 
29, 30, 34, 27C and 28C were employed to calculate 
T A , £2m and Xlm for each of the five experiments. 
These values are compared with the experimental 
results in lines 4 to 9 of Table VI I ; the agreement is 
seen to be satisfactory. The numbers in lines 2 and 
3 of this table are included to indicate how much 
the values of T2, equation 30, differ from a2 for 
these experiments. 

TABLE VII 

COMPARISON OF EXPERIMENTAL VALUES OF SDA, 3J2m AND 

3)24m WITH THOSE CALCULATED FROM THE FOUR DIFFUSION-

COEFFICIENTS IN TABLE VI 

CLICI = 0.25, CKCI = 0.2; c.g.s. units; T = 25° 
1 E x p . no . IV V VI V I I X 
2 az 0 . 8 9 9 8 0 .1691 0 . 1 6 9 7 0 . 0 0 0 1 0 .9992 
3 T2 0 . 9 2 7 6 0 . 4 4 2 5 0 . 4 4 2 9 0 . 3 3 O 4 0 . 9 9 3 6 
4 (TAX lO'Jcaicd. 1 7 4 9 1.388 1.389 1.321 1.809 
5 ( J A X 1 0 ' ) „ b , l 1.748g 1 .389i 1.3893 1.3194 1 . 8 0 9 S 

6 ( t i m X 10»)„i„t . 1.767 1.444 1.444 1.369 1.811 
7 (X'2m X 105)obsd. 1.76J1 1.444i 1.442] 1.3654 1.809g 
8 ffL X 1 0 " ) t , ! r f 3 . 151 2 . 1 9 4 2 . 1 9 5 1.973 3 .281 
9 (XJn , X 10">)ob!d. 3 . 137 2 . 1 9 6 2 . 1 8 5 1.935 3 .276 

Fringe deviation graphs corresponding to the 
diffusion coefficients in Table VI were calculated for 
the five experiments by use of equations 42, 46, the 
values of F2 in Table VII , and Table IV of a previ
ous paper.3 The dashed lines in Figs. 2 and 2a 
represent the first term of order (\''r2 — I)- in 
equation 46, while the solid lines include the next 
term of order ( \ /r2 — 1 )3. Tha t the convergence of 

equation 46 is adequate for this system is seen by 
comparing the solid lines with the circles, which 
were computed directly from equations 38-40 using 
arbitrary values of y. Although this numerical 
calculation procedure avoided the use of series ex
pansions for 0, it should be remembered tha t the 
terms containing H'(zn) and H'(z22) in equations 
22 and 23 have been neglected in the derivation of 
equations 39 and 40; furthermore, any concentra
tion dependence of the diffusion coefficients has not 
been considered. I t is impossible at present to 
determine whether the small remaining discrep
ancies between calculated and observed fringe de
viations in Figs. 2 and 2a are due to these omissions 
or to imperfect selection of values for the diffusion 
coefficients in Table VI. Equation 45 converges 
more rapidly than equation 46 for calculation of 9. 
for experiments IV and X, but equation 46 was 
employed since it converges satisfactorily for all 
five experiments. 

(b) The LiCl-NaCl System.—Using the second 
and fourth reduced moments in Table IV, values 
for 0i, e2) Dn, (RiZR2)Du, (R2ZRi)D2I and D22 were 
computed as described above from those pairs of 
experiments for which (0:2)1 — («2)11 > 0.4. The 
results are listed in Table V I I I ; estimated maxi
mum errors were calculated using the previous as
sumptions. As indicated above, the absolute val
ues of these estimated errors are probably too large, 
but it is believed tha t their reciprocals provided 
suitable weighting factors for obtaining the aver
ages in the bot tom line of Table VI I I . 

Owing to the fact tha t both cross-term diffusion 
coefficients, DV2 and Dn, are quite large for this sys
tem, equations 29 and 30 do not converge satisfac
torily. Hence fringe deviation graphs cannot be 
calculated from the diffusion coefficients in Table 
VI I I for comparison with the experimental graphs 
in Fig. 3, and the second calculation procedure 
used to obtain diffusion coefficients for the LiCl-
KCl mixtures cannot be applied to this system. 
The non-zero deviation graphs for experiments X I I 
and X I I I , in which a\ and a2 were zero, respectively, 
show directly tha t interacting flows exist in this 
system. I t is of interest to observe from the fringe 
deviation graph of experiment XV that , even in the 
presence of interacting flows and when neither value 
of a is close to unity, a Gaussian boundary may 
still be obtained within the error of measurement. 

Discussion 
We have purposely avoided considering the phe

nomenon of ionization in the above presentation of 
diffusion data for mixed electrolyte solutions. This 
was done to emphasize tha t diffusion in three-
component systems is described by equations 1 and 
2 for the case when two solutes dissociate into three 
ionic species, as well as when all components are 
non-electrolytes. 

If, however, one wishes to relate the above diffu
sion coefficients to individual ion mobilities and 
solute activity coefficients, it is necessary to con
sider the flows of the individual ions. Quanti tat ive 
relations of this kind w'ill not be considered here, but 
a few qualitative correlations should be noted. For 
the LiCl-KCl mixtures the value of D12 ̂  0, and 
the resultant Gaussian refractive index gradient 
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TABLE VIII 

VALUES OP $I, 02 AND THE FOUR DIFFUSION COEFFICIENTS CALCULATED FROM THE REDUCED MOMENTS FOR THE LiCl-NaCl-

H2O SYSTEM; CLICI = 0.25, CNaCi = 0.2; c.g.s. units; T = 25° 
i 

Exps. used 

XII:XIII 
XII: XVI 
XIII: XV 
XV: XVI 

Av. 

Oi x io« 

.321 ± 0.003 

.313 ± .005 

.321 ± .003 

.315 ± .007 

.319 

«2 X 105 

1.445 ± 0.003 
1.445 ± . 003 
1.439 ± .005 
1.441 ± .006 
1.443 

Dn X 

.05i ± 

.116 ± 

.037 ± 

.118 ± 

10» 

0.132 
.229 

.138 

.3O0 

curve for experiment X, Fig. 2, might be antici
pated from the fact tha t the mobilities (or equiva
lent conductances) of K + and C l - are nearly identi
cal. Hence, no appreciable electrostatic potential 
gradient was created by the diffusion of potassium 
chloride, and the L i + ions were not disturbed. In 
experiment VI I the C l - ions tended to move faster 
than the L i + ions because of their greater mobility. 
In the process a small proportion of K + ions were 
transported with the L i + ions by the resulting po
tential gradient, and a non-Gaussian refractive in
dex gradient curve was produced. Interaction of 
flows occurred in both experiments X I I and X I I I 
with the LiCl-NaCl system because the mobilities 
of L i + and N a + differ from the mobility of C l - . In 
experiment X I I I a small proportion of N a + was 
transported with the more rapidly moving C l - , 
while some L i + was transported with the C l - in ex
periment X I I . These conclusions are supported 
by inspection of equations 22 and 23 after substitu
tion of the appropriate numbers for the diffusion co
efficients from Tables VI and VI I I . 

Previous descriptions of the diffusion process in 
electrolyte solutions, instead of using the phenom-
enological approach, have commonly been based 
on equations which relate the flow of each ion to the 
several ionic mobilities, concentrations and elec
trochemical potential gradients. In order to com
pute liquid junction potentials in cells with trans
ference,46 Taylor47 used this approach to derive ex
pressions for ionic concentrations in freely diffusing 
boundaries, bu t the series expressions he developed 
differ in form from equations 22 and 23. For a solu
tion containing three ionic species his equations in
cluded terms corresponding to the variation of Di1, 

(4G) D. A. Maclnnes, "The Principles of Electrochemistry, 
hold Publ. Corp., New York, N. Y., 1939, Chapter 13. 

(47) P. B. Taylor, J. Phys. Chem., 31, 1478 (1927). 

(I) 
0.134 
0.126 
0.135 
0.106 
0.127 

Dn X 105 ' * : ) -
.151 
.142 
• 25o 
.302 

0 .27 0 

o. 19; 
0.284 
0.197 
0.25Q 

X 10' 

0.12 9 

.224 

.135 

.293 

D;i X 10' 

.3Il ± 0.148 

.319 ± -139 

.304 ± .246 

.335 ± -295 
• 316 

Dvi, Dn and D-n with ionic concentrations, and they 
were not limited (as are equations 22 and 23) to the 
case in which one cross-term diffusion coefficient is 
small. However, his equations were sufficiently 
complex so tha t only the first correction to the Gaus
sian function could easily be evaluated, and approx
imations in his solution prevented the calculated 
values of the three ionic concentrations from satis
fying the condition of electrical neutrali ty through
out the boundary. Our approach, while avoiding 
this difficulty by choosing as solute components the 
neutral salts, is not complete in tha t variations in 
the diffusion coefficients with solute concentrations 
have been neglected. 

I t is of interest t ha t Taylor 's flow equations have 
the same general form as equations 1 and 2, if we 
let the subscripts 1 and 2 denote the cations in
stead of neutral salts. Fur ther studies should per
mit correlation of the phenomenological diffusion co
efficients with terms in his flow equations, and with 
terms in the more general theories of Onsager and 
Fuoss48 and Onsager.15 Besides increasing our 
knowledge of the fundamentals of diffusion in elec
trolyte solutions, these developments would aid in 
the interpretation of diffusion experiments with 
protein solutions at pB. values other than their iso
electric points. 
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